
Probabilistic filters for Dash

Motivations
	 Cryptocurrencies such as Dash or Bitcoin relies on the blockchain technology where a full
copy of the ledger is stored on nodes across the network. This ledger is very large and requires
important computation power to process. Light clients such as smartphones cannot cope directly
with the full ledger but instead request needed information to these nodes. This method is the
Simplified Payment Verification or SPV.
	 For a node to know which piece of data to send to which client, these light clients send a
probabilistic filter or approximate membership set to this node. This filter, which represent a set of
elements potentially interesting for the client such as addresses or transactions hash for instance,
is much smaller than a simple list containing these elements. Hence, this data structure reliefs the
node memory storage and the network bandwidth which is often a scarce ressource.

	 During this study, we aimed at improving the existing performances of this filter, either by
completely changing the data structure or by harnessing the capabilities of modern CPUs such as
vectorised operations. According to our requirements, the improvements relate either to the speed
of execution of a query to the filter, or to the size of the filter.

Improvements

	 T h e p r o b a b i l i s t i c fi l t e r s
implemented today in the Dash source
code are Bloom filters. This type of filter
was first introduced in 1970 by Burton
Howard Bloom. It consists in a bit array,
with all bits initially set to 0. An element is
represented in this array by k bits set to 1,
pseudo-randomly chosen by k hash
functions. All the elements in the set to be
represented will thus turn some bits to 1.
Afterward, to check if a given element is a
member of the represented set, the same
k hash functions are applied to this
element and the bits pointed by these k hash value are tested : if all the corresponding bits are set
to 1, the element is Probably inside the set ; if one or more bits are set to 0, it is Definitely not
inside. This data structure allows elements that were not inserted in the filter to lead to a positive
answer : this is called a False positive.

Query speed

	 This Bloom filter is a smart and efficient data structure but is far from being optimal. An
impressive amount of research has already be done and is still being done to find better
alternatives that are either faster to query, that are more compact or that features any special
properties. The study was conducted by first exploring these diverse alternatives , understand
their mathematical grounds and identify which of those fit the better with our Simplified Payment
Verification problem. After that, the chosen potentially better alternatives were modified, tuned or
implemented from scratch.

Using profiling tools (e.g. Apple Instruments) we have able to determine two main factors that
have an impact on the query speed : the time required to compute hash functions and the number
of memory accesses performed by the CPU. The first factor has been tackled by replacing the

x

h1(x) h2(x) h3(x) hk(x)

1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

m

MurmurHash3 function by the faster Farmhash function. The memory access bottleneck has been
addressed using different data structures such as the Cuckoo filter and the Morton filter or
variants of the Bloom filter such as the SIMD Blocked Bloom filter and the One-memory-access
Bloom filter. Tests were run on these filters with parameters that mimic real-life usage : filters
representing 100 to 100,000 elements (addresses, hash of transactions, COutPoints), mostly
negative queries, false positive rate of 0.01%. The obtained speedups are summarised in the
following table :

The SIMD blocked Bloom filter and the Cuckoo filter are by far the fastest filters tested, yielding
query times up to 8 times shorter. As its name suggests, the SIMD blocked Bloom filter relies on
SIMD (Single Instruction Multiple Data) set of instructions such as Intel AVX, which are supported
by most recent CPUs but can be a paying option in Web Services providers (e.g. Amazon Web
Services). This can be an obstacle to portability we can solve either by imposing specifications to
the masternodes or implementing a slower non-SIMD blocked Bloom filter for CPUs that doesn’t
support AVX instructions.

The Morton filter is has first been introduced in 2018 so no reference implementation is available
and no discussions about its performances were found. In my tests, with my implementation,
Morton filter is slower than the two last options, whereas it was expected to be faster than the
Cuckoo filter. Further work is needed to verify if we can reach these expected performances.

Space efficiency

	 If our goal is to minimise the size of the filters sent across the network, the Cuckoo
filter and the Morton filter are an efficient alternative, reducing the size of the data
structure by bringing it closer to its optimal value. Golomb coded sets is a more compact
alternative, but comes at the cost of slow queries, linear in time with the number of
elements represented by the set.

� false positive rate

Filters Speed-up (Dash Bloom filter as reference)

Bloom filter using only 2 hash functions 3x - 4x

One-memory-access Bloom filter 3.5x - 4.5x

Morton filter 3.5x - 5x

Cuckoo filter 6x - 7.5x

SIMD blocked Bloom filter 7x - 8x

Filters Bits per item

Bloom filter

Cuckoo filter

Morton filter

Golomb coded sets

� �≈ K′� +
l og2(1

ϵ)
0.95 K′� > 1.9

 �≈ 1.44 × l og2(1
ϵ

)

�
≈ 1.5 + l og2(1

ϵ
)

� �≈
K + l og2(1

ϵ)
0.95 K = 2 or 3

ϵ =

Conclusion
	 A variety of filters and variants exists to either improve speed or memory usage. I
found out that the current fastest of these filters are the Cuckoo filter and the SIMD
blocked Bloom filter. To address the memory usage issue, Golomb coded sets are near-
optimal data structures but can not be used in situations where a server has to handle
thousands of filters at once, each representing an important number of elements (e.g. a
notification server), this is why a Cuckoo filter would be prefered.

	 Further work should be done to take full advantage of the Morton filter which is
expected to be a better candidate for both query speed and size.

	 Another interesting line of research to ease the work of server handling the filters is
the use of Multidimensional Bloom filters, or Bloofi introduced by Crainiceanu and
Lemire that allows multiple queries at once.

	

	

	

	

